
DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 1

(A0510194) DESIGN AND ANALYSIS OF ALGORITHMS

UNIT IV

UNIT-IV:

Dynamic Programming: General method, applications- 0/1 knapsack problem,

All pairs shortest path problem, Travelling sales person problem, Reliability

design, optimal binary search tree.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 2

Dynamic Programming:

Dynamic programming is an algorithm design method that can be used when

the solution to a problem can be viewed as the result of a sequence of decisions.

0/1 knapsack problem:

A solution to the knapsack problem can be obtained by making a sequence of

decisions on the variables x1, x2, … , xn.

A decision on variable xi involves determining which of the values 0 or 1 is to be

assigned to it. Let us assume that decisions on the xi are made in the order xn,

xn-1, … , x1. Following a decision on xn, we may be on one of two possible states.

The capacity remaining in the knapsack is m and no profit has accrued (or) the

capacity remaining is m-wn and a profit of pn has accrued. It is clear that the

remaining decisions xn-1, … , x1 must be optimal with respect to the problem

state resulting from the decision on xn. Otherwise xn, xn-1, … , x1 will not be

optimal.

The value of the optimal solution with n objects and with knapsack capacity m

is

 fn(m) = max { fn-1(m), fn-1(m-wn)+pn }

In general

 fi(y) = max { fi-1(y), fi-1(y-wi)+pi }

If we use the ordered set Si = { (fi(yj),yj) | l ≤ j ≤ k } to represent fi(y). Each member

of Si is a pair (P,W), where P = fi(yj) and W = yj. Note that S0 = {(0, 0)}.

We can compute Si+1 from Si by first computing

S1
i = { (P,W) | (P-pi , W-wi) ∈ Si }

Now, Si+1 can be computed by merging the pairs in Si and S1
i together. Note that

if Si+1 contains two pairs (Pj,Wj) and (Pk,Wk) with the property that Pj ≤ Pk and Wj

≥ Wk, then the pair(Pj,Wj) can be discarded. This is called purging rule.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 3

Eg: Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) =

(1, 2, 5), and m = 6.

Note that the pair (3, 5) has been eliminated from S3 as a result of the Purging

rule.

With m = 6, the value of f3(6) is given by the tuple (6, 6) in S3. The tuple (6, 6) ∉

S2, and so we must set x3 = 1. The pair (6, 6) came from the pair (6-P3, 6-w3) =

(1,2). Hence(1,2) ∈ S2. Since (1,2) ∈ S1, we can set x2 = 0. Since (1,2) ∉ S0, we obtain

x1=1. Hence an optimal solution is (x1, x2, x3)= (1,0,1).

Informal Knapsack Algorithm:

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 4

All pairs shortest path problem:

Let G = (V, E) be a directed graph with n vertices. Let cost be a cost Adjacency

matrix for G such that cost(i,i)= 0, 1≤ i ≤ n. Then cost(i,j) is the length (or cost) of

edge <i,j> if <i,j> ∊ E(G) and cost(i,j)= ∞ if i ≠ j and (i,j) ∉ E(G). The all-pairs

shortest-path problem is to determine a matrix A such that A(i,j) is the length of

a shortest path from i to j.

Let us examine a shortest i to j path in G, i ≠ j. This path originates at vertex i

and goes through some intermediate vertices (possibly none) and terminates at

vertex j. We can assume that this path does not contain any cycles. If k is an

intermediate vertex on this shortest path, then the sub paths from i to k and

from k to j must be shortest paths from i to k and k to j, respectively. Otherwise,

the i to j path is not of minimum length.

If k is the intermediate vertex with highest index, then the i to k path is a shortest

i to k path in G going through no vertex with index greater than k-1. Similarly

the k to j path is a shortest k to j path in G going through no vertex of index

greater than k-1.

Using Ak(i,j) to represent the length of a shortest path from i to j going through

no vertex of index greater than k, we obtain

Clearly, A0(i,j) = cost(i,j), 1≤ i ≤ n, 1≤ j ≤ n. A shortest path from i to j going through

no vertex higher than k either goes through vertex k or it does not. If it does,

Ak(i,j) = Ak-1(i,k) +Ak-1(k,j).

If it does not; then no intermediate vertex has index greater than k-1. Hence

Ak,(i,j)= Ak-1(i,j).Combining, we get

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 5

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 6

Travelling Sales person problem:

Let G = (V,E) be a directed graph with edge costs Cij. The variable Cij is defined

such that Cij > 0 for all i and j and Cij = ∞ if (i,j) ∉ E. Let |V| = n and assume n

> 1. A tour of G is a directed simple cycle that includes every vertex in V. The

cost of a tour is the sum of the cost of the edges on the tour. The traveling sales

person problem is to find a tour of minimum cost.

Assume that the tour starts and ends at vertex 1. Every tour consists of an edge

(l,k) for some k ∊ V- {1} and a path from vertex k to vertex 1.Thepath from vertex

k to vertex1goes through each vertex in V- {1} exactly once. It is easy to see that

if the tour is optimal, then the path from k to 1must be a shortest k to 1path

going through all vertices in V- {l,k}. Hence, the principle of optimality holds.

Let g(i,S) be the length of a shortest path starting at vertex i, going through all

vertices in S, and terminating at vertex 1.The function g(l,V-{1}) is the length of

an optimal sales person tour.

From the principle of optimality it follows that

In general for i ∉ S,

g(i, Φ) = Ci1, 1 ≤ i ≤ n.

Then we can obtain g(i, S) for all S of size1.Then we can obtain g(i, S) for S with

|S|= 2, and so on.

Eg:

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 7

An optimal tour of the graph has length 35. Let J(i,S) be the value of j that

minimizes g(i,S).

J(1, {2,3,4}) = 2

J(2, {3,4}) = 4

J(4,{3}) =3

So, the optimal tour is 1, 2, 4, 3, 1.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 8

Reliability Design Problem:

The problem is to design a system that is composed of several devices connected

in series.

Let ri be the reliability of device Di (the probability that device i will function

properly). Then, the reliability of the entire system is πri. Even if the individual

devices are very reliable, the reliability of the system may not be very good. For

example, if n = 10 and ri = 0.99,1≤ i ≤ 10,then πri = 0.904.

Hence, it is desirable to duplicate devices. Multiple copies of the same device type

are connected in parallel through the use of switching circuits.

The switching circuits determine which devices in any given group are

functioning properly. They then make use of one such device at each stage.

If stage i contains mi copies of device Di, then the probability that all mi have a

malfunction is (1- ri)mi. Hence the reliability of stage i becomes 1-(1- ri)mi. Thus,

if ri = 0.99 and mi = 2, the stage reliability becomes 0.9999.

Let us assume that the reliability of stage i is given by a function Φi(mi) 1≤ i ≤ n,

The reliability of the system of stages is π1≤ i ≤ n Φi(mi).

Our problem is to use device duplication to maximize reliability. This

maximization is to be carried out under a cost constraint. Let c, be the cost of

each unit of device i and let C be the maximum allowable cost of the system

being designed. We wish to solve the following maximization problem

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 9

Assume that each Ci >0, so each mi must be in the range1< mi <ui, where

Let fi(x) represent the maximum value of π1≤ j ≤ i Φ(mj) subject to the constraints

∑1≤ j ≤ i Cjmj ≤ x ad 1< mj <uj , 1 ≤ j ≤ i.

Then, the value of an optimal solution is fn(C). The last decision made requires

to choose mn from {1, 2,3,... , un}. Once a value for mn has been chosen, the

remaining decisions must be such as to use the remaining funds C-cnmn in an

optimal way.

In general

Clearly, f0(x)= 1for all x, 0 ≤ x ≤ c.

Let Si consist of tuples of the form (f, x), where f = fi(x). The dominance rule (f1,x1)

dominates (f2,x2) iff f1 ≥ f2 and x1 ≤ x2 holds for this problem too. Hence,

dominated tuples can be discarded from Si.

Eg: c1 = 30, c2 = 15, c3= 20, C = 105, r1 =0.9, r2 = 0.8, r3 = 0.5

Find the maximum possible devices in each stage using

u1=2, u2= 3, and u3 = 3.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 10

S0 = {(1,0)}

We can obtain each Si from Si-1 by trying out all possible values for mi and

combining the resulting tuples together.

We can use Sj
i to represent all tuples obtainable from Si-1 by choosing mi = j.

S1
1 = {(0.9, 30)}

S2
1 = {(0.99, 60)} S1 = {(0.9, 30), (0.99, 60)}

S1
2 = {(0.72, 45), (0.792, 75)}

S2
2 = {(0.864, 60)}

Note that the tuple (0.9504, 90) which comes from (0.99,60) has been eliminated

from S2
2 as this leaves only 15. This is not enough to allow m3=1.

S3
2 = {(0.8928, 75)}

S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)} as the tuple (0.792, 75) is dominated

by (0.864, 60).

S1
3 = {(0.36, 65), (0.432, 80), (0.4464, 95)}

S2
3 = {(0.54, 85), (0.648, 100)}

S3
3 = {(0.63, 105)}

S3 = {(0.36, 65), (0.432, 80), (0.54, 85), (0.648, 100)}.

The best design has a reliability of 0.648and a cost of 100.

Tracing back through Si’s, we determine that m1=1, m2=2 and m3=2.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 11

OBST (Optimal Binary Search Tree):

Binary Search Tree:

A binary search tree T is a binary tree; either it is empty or each node in the tree

contains an identifier, and

i. All identifiers in the left sub tree of T are less than the identifiers in the

root node T

ii. All identifiers in the right sub tree of T are greater than the identifiers in

the root node T

iii. The left and right sub trees of T are also binary search trees.

To determine whether an identifier X is present in a binary search tree, X is

compared with the root. If X is less than the identifier in the root, then the search

continues in the left sub tree. If X equals the identifier in the root, the search

terminates successfully, Otherwise the search continues in the right sub tree.

Consider the following two binary search trees:

The tree of Figure (a) in the worst case requires four comparisons to find an

identifier, whereas the tree of Figure (b) requires only three. On the average the

two trees need 12/5 and 11/5 comparisons respectively.

This calculation assumes that each identifier is searched for with equal

probability and that no unsuccessful searches are made.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 12

In a general situation, we can expect different identifiers to be searched for with

different frequencies (or probabilities). In addition, we can expect unsuccessful

searches also to be made.

Let us assume that the given set of identifiers is {a1, a2, a3 … an} with a1 < a2 < a3

< … < an. Let p(i) be the probability with which we search for ai. Let q(i) be the

probability that the identifier x being searched for is such that ai < x < ai+1, 0 ≤ i

≤ n. (assume a0 = -∞ and an+1 = +∞).

Then, ∑0 ≤ i ≤ n q(i) the probability of an unsuccessful search.

∑1 ≤ i ≤ n p(i) +∑0 ≤ i ≤ n q(i) = 1.

Given this data we wish to construct an optimal binary search tree for {a1, a2, a3

… an}.

In obtaining a cost function for binary search trees, it is useful to add an external

node in place of every empty sub tree in the search tree. All other nodes are

internal nodes. If a binary search tree represents n identifiers, then there will be

exactly n internal nodes and n +1external nodes. Every internal node represents

a point where a successful search may terminate. Every external node represents

a point where an unsuccessful search may terminate.

If a successful search terminates at an internal node at level l, then the expected

cost contribution from the internal node for ai is p(i) * level(ai).

The identifiers not in the binary search tree can be partitioned into n + 1

equivalence classes Ei, 0 ≤ i ≤ n. The class E0 contains all identifiers x such that

x < a1. The class E1 contains all identifiers x such that ai < x < ai+1, 1 ≤ i < n.

The class En contains all identifiers x, x > an.

If the failure node for Ei is at level l, then the cost contribution of this node is

q(i) * (level(Ei)-1).

So the expected cost of a binary search tree is

∑1 ≤ i ≤ n p(i)* level(ai) +∑0 ≤ i ≤ n q(i) * (level(Ei)-1).

Eg: (a1, a2, a3) = (do, if, while)

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 13

With equal probabilities p(i) = q(i) = 1/7 for all i, we have

cost(tree a) = 15/7

cost(tree b) = 13/7

cost(tree c) = 15/7

cost(tree d) = 15/7

cost(tree e) = 15/7

As expected, tree b is optimal.

With p(l)= 0.5, p(2) = 0.1, p(3) = 0.05, q(0)= 0.15, q(1) = 0.1, q(2)= 0.05 and g(3)=

0.05 we have

cost(tree a) = 2.65

cost(tree b) = 1.9

cost(tree c) = 1.5

cost(tree d) = 2.15

cost(tree e) = 1.6 Tree c is optimal.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 14

To apply dynamic programming to the problem of obtaining an optimal binary

search tree, we need to view the construction of such a tree as the result of a

sequence of decisions and then observe that the principle of optimality holds

when applied to the problem state resulting from a decision. A possible approach

to this would be to make a decision as to which of the ai's should be assigned to

the root node of the tree.

If we choose ak, then it is clear that the internal nodes for a1, a2, a3 … ak-1 as well

as the external nodes for the classes E0,E1,…,Ek-1 will lie in the left sub tree ‘l’ of

the root. The remaining nodes will be in the right sub tree ‘r’. So we can define

and

In both cases the level is measured by regarding the root of the respective sub

tree to be at level 1.

Consider W(i,j) represent the sum

we obtain the following as the expected cost of the search tree

….. (1)

If the tree is optimal, then eq(1) must be minimum. Hence, cost(l) must be

minimum over all binary search trees containing a1, a2, a3 … ak-1 and E0,E1,…,Ek-

1. Similarly cost(r) also must be minimum.

If we use c(i,j) to represent the cost of an optimal binary search tree tij containing

ai+1 to aj and Ei,...,Ej, then for the tree to be optimal, we must have cost(l) = c(0,k-

1) and cost(r)= c(k,n). In addition, k must be chosen such that

is minimum.

Hence,

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 15

…(2)

In general,

 …(3)

Equation (3) can be solved for c(0,n) by first computing all c(i,j)such that j-i =1

(note c(i,i)= 0 and w(i,i)= q(i), 0 ≤ i ≤ n). Next we can compute all c(i,j) such that

j-i = 2, then all c(i,j) with j - i = 3, and so on.

If during this computation we record the root r(i,j) of each tree tij, then an optimal

binary search tree can be constructed from these r(i,j). Note that r(i,j) is the value

of k that minimizes eq (3).

Eg: Let n = 4 and (a1, a2, a3, a4) = (do,if, int,while). Let p(l:4) = (3,3,1,1) and q(0

:4) = (2,3,1,1,1). The p's and q's have been multiplied by 16 for convenience.

Initially, we have w(i,i)= q(i), c(i,i)=0 and r(i,i)= 0, 0 ≤ i ≤ 4.

Using W(i,j)=p(j)+<q(j)+w(i,j-1),we get

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 16

The box in row i and column j shows the values of w(j,j+i), c(j,j+i) and r(j,j+i)

respectively.

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by: Dr. K Rajendra Prasad, Dept. of CSE(CS), IARE Page 17

The time complexity is O(n3).

